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Abstract

This project surveys progress towards generalizing conventional convolutional neural net-
works (CNN’s). We will discuss how the conventional CNN can be realized as a cross-
correlation of signals on Euclidean space with respect to the translation group, and how this
perspective paves the way toward generalizing toward arbitrary groups (both in theory in prac-
tice), as developed in [1], [4], [7]. In light of this, we will also discuss progress in generalizing
CNN’s to more general homogeneous spaces on which groups can act, as developed in [5] [2]
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1 Introduction

This project will survey progress towards generalizing conventional convolutional neural networks
(CNN’s). We will discuss how the conventional CNN can be realized as a cross-correlation of signals
on Euclidean space with respect to the translation group, and how this perspective paves the way
toward generalizing toward arbitrary groups (both in theory in practice), as developed in [1], [4], [7].
In light of this, we will also discuss progress in generalizing CNN’s to more general homogeneous
spaces on which groups can act, as developed in [5] [2] [6] [3]. As a proof of concept, we will discuss
and implement methodology developed by [5] for the task of classifying signals of the sphere.

2 Background

In this section we include foundational concepts, including groups, representations, homogeneous
spaces, and cross-correlations, among others, which the reader should take care to understand before
proceeding to the next section.



2.1 Groups

Definition 1 (Group). A group is a set G with an associative binary operation x which satisfies
the following constraints:

(1) there exists an element e € G, referred to as the identity, which satisfies e x g = gxe = g for
all g =€ G, and

1

(2) for every g € G, there exists an element g~ € G so that gxg ' =g lxg=ce.

Examples of groups include T(2), the group of translations of Z?, the group p4 of rototranslations
of Z? and the group SO(3) of 3D rotations.

When there is no danger of ambiguity, we drop the x, and refer to the product of two group elements
91,92 € G as g192 € G.

Definition 2 (Subgroup). A subset H of a group G with binary operation * is said to be a subgroup
of G if H is itself a group under *.

Definition 3 (Coset). Given a group G, a subgroup H C G, and an element g € G, we denote by
gH = {gh|h € H} the (left) g-coset of H.

Theorem 1 (Cosets Partition Group). Let G, H be as in the previous definition. Write g ~ gy if
g2 € g1 H. Then

(1) the relation ~ is an equivalence relation,

(2) the relation ~ naturally partitions G into disjoint subsets, and

(3) these subsets are all of size |H]|.

Proof. Omitted for brevity. O

2.2 Representations

Definition 4 (General Linear Group). Let V' be a vector space. Then the set of invertible maps
T :V — V is a group under composition. This group is referred to as the general linear group of

V', and is denoted by GL(V).

Definition 5 (Representation). Let G be a group and let V' be a vector space. Then a map
7m: G — GL(V) is said to be a representation of G if for all g1, 92 € G, 7(g192) = 7(g1)7(g2)-

Depending on the context, “representation” may refer to the map m, the vector space V' on which
the group G is acting on, or, less frequently, elements of V.
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Figure 1: Equivariance.

Definition 6 (Irreducible Representation). With the same notation as in the previous definition,
the representation 7 : G — GL(V) is said to be reducible if there exists a proper subspace W C V
which is invariant under action by G. A representation is said to be irreducible if it is not reducible.

It follows that all representations are direct sums of irreducible representations. As a result, the
irreducible representations play a central role in the representation theory of a given group.

As will be clear later, it is often necessary to extend a representation 7 of a subgroup H of G to
a representation p on the whole of G which is consistent with 7. The canonical choice for such a
representation p on G is known as the induced representation. To define the induced representation,
we must first consider a representation p : H — GL(V), describing action by the subgroup H of G
on the vector space V. In extending p to the whole group G, notice that the cosets gH of H act as
copies of H. Now let us choose representatives gy, . .., g, of the cosets of H, where n = [G : H] is the
number of cosets of H in GG, and consider vector spaces Vi,...,V, >~ V. Then for any g € G, and
9i, 99; = girh for some i’. Letting g;v; denote an element of V;, we define the induced representation
p'=nd%p: G — GL(@, Vi) by
p'(9)givi = gip(h).

2.3 Equivariance

Definition 7 (Equivariance). Let m : G — GL(V;) and 7y : G — GL(V4) be representations of a
group G. A map f : V; — V4 is said to be equivariant if for all ¢ € G and v € Vi, f(m(g)v) =

ma(g) f(v).

Definition 8 (Homogeneous Space). A set S is said to be a homogeneous space with respect to a
group G if there exist functions {L, : S — S}geq so that for all ¢1,9, € G, L, o Ly, = Ly, 4, and
so that for all z,y € S, there exists a g € G for which Ly(x) = y. We say that the maps L, give a
group action of G on S.



Note that from any representation 7 : G — V of a group G, we find that V' is a homogeneous space
by L,(v) = 7(g)v. One imporant example of a homogeneous space is that of Z?, with respect to the
group T(2) of translations. The group action L, for translation t € T(2) is given by L,(z) = = + t.

Definition 9 (Equivariance on homogeneous Spaces). Let Si, .Sy be two homogeneous spaces of a
group G. A map f : S} — S, is said to be equivariant if for all g € G and s € S, f(Lyv) = L, f(v).

2.4 Convolution and Cross-Correlation

Definition 10 (Signal). A signal f on a set S is a map from S to RE, for some positive integer K.
Oftentimes, S has additional structure (e.g. is a homogeneous space). The individual coordinates,
or channels, of the signal f : S — R are themselves functions f; : S — R.

For example, we can think of a colored image as a signal f : Z2 — R3: f sends elements of Z2
(pixels) to (r,g,b) € R? corresponding to the RGB values at that pixel.

Given two signals f : Z?> — R and U : Z? — R, the convolution of f and g, denoted by f * g, is
given by
[f=gl(x) =Y fly)g (1)
yEeZ2
Related is the cross-correlation of f and g, denoted by f * g, and given by

[f*gl(x) = fly)g (2)

yeZ?

In this project, as well as in practice, we will work instead with the cross-correlation, as it is more
amenable to generalization. While the definitions presented here are intended for the homogeneous
space Z?2, they may be easily modified for other homogeneous spaces.

2.5 Fourier Bases

On many homogeneous spaces S we will concern ourselves with, the space of nicely behaved R-
valued functions defined on this space is in fact a vector space. The homogeneous space S = R has
the standard Fourier basis {sin(27nx), cos(2mnz)}>2,. The sphere S? has the so-called spherical
harmonics. Finally, the Lie group SO(3) of rotations has the so-called Wigner D-matrices. The
process of rewriting a function in these so-called Fourier bases is known as the (generalized) Fourier
transform.

2.6 Commonly Used Groups

We'll briefly define two symmetry groups of Z? which we will make frequent use of in examples in
later sections.



Definition 11 (p4). The group p4 consists of all translations of Z?, rotations of multiples of 90°
about grid points.

Definition 12 (p4m). The group p4m is the group p4 with mirror symmetry. These are the
isometries of Z2.

3 Related Work

As we travel from the conventional CNN to more general variants, we will pay special attention to
the both group(s) involved, as well as the underlying space on which our signal live.

3.1 Conventional CNN'’s

Conventional convolutional neural networks (CNN’s) work by learning a correlation filter ¥, which
is cross-correlated with a given input signal, on a discrete Euclidean space like Z?2, to produce an
output signal also on Z2. As we will see, it is misleading to label the output signal as being on Z2,
as it is actually a signal on the group of translations T(2) of Z2.

Assume for the sake of simplicity that we wish to learn a map from a signal f : Z? — R with a single
channel to a new signal f’: Z? — R, again with only a single channel. A conventional convolutional
neural network will parameterize this map as a cross-correlation between f, and a learnable signal
U : Z? — R, referred to as the convolution kernel (although really it’s a correlation kernel). In
practice, this ¥ is compactly supported, meaning that it is zero in all but some compact subset of
Z? (e.g., a 3 x 3 grid within Z?). As a function f and ¥, we then have

flla)=(F*x0)(z) = fly)¥ (3)

y€eZ2

Denote by Sy C Z? the support of ¥. Then we may rewrite (3) as

Fla)=(f0) (@)= > fy)P(y—a) (4)

y—xESy

Thus, the value of f’ at x is given by shifting the kernel ¥ by z, and dotting the portion of f
which aligns with the shifted support Sy 4+ = with W. It is not hard to adapt (4) for f and f" with
arbitrary numbers of channels. Suppose now that f : Z? — R has ¢; channels and f’ : Z? — R
has ¢y channels. How does our kernel ¥ change? Our initial definition of ¥ : Z? — R had only
a single channel encoding the relationship between the sole channel of f and the sole channel of
f'. When f and f’ now have ¢; and ¢, channels respectively, our kernel W must still be capable of
encoding the relationship between each input channel and each output channel, so that our adapted



U : 72 — R must have c¢;cy channels. Explicitly, the j-th channel fi of f"is now given by

fila) = (f > )(x Z > iy )W (y — ). (5)

1=1 y— xGS
v

where the signal U7 : Z? — R is comprised of the channels of ¥ which affect the j-th channel of f,
and where \Ilf : Z% — R is i-th channel of ¥/, encoding the relationship between f; and fi- Now, we
encounter a big idea. In (5), whereas y € Z? is a point, x only ever acts as a translation, or in other
words, as an element of the translation group T(2) of Z?. Thus, the signal f’ is actually a signal

on T(2). In practice, we get away with pretending its a signal on Z? because of the isomorphism
7? ~T(2).

Big Idea 1. Given signals f : Z? — R and ¥ : Z? — R“, the output signal f' = fx ¥ is a
signal on the translation group T(2) of Z2. In practice, it is possible to pretend that f’ is a signal
on Z? because of the isomorphism Z* ~ T(2).

[5) fa

[f# v] () (§*7¥) (%)

Figure 2: In illustration of the shift-and-dot nature of conventional cross-correlation.

The group T(2) is significant in another way: cross-correlations as defined in (5) are equivariant to
T(2).

Theorem 2. The cross correlation defined by (5) is equivariant to the group T(2). That is, given
some translation ¢ € T(2), the following equality holds:

(Lo (f x W))(x) = (L [ W)]().

Proof. Observe that

[Le (f % 09))(2) = (f * V7)(t ") ZZ]‘; W (27" t)y).

i=1 yeZz2



And permuting the order of summation with »_ ;- Fi)¥ (2 )y) = > yez Fi(t ') (1),

we obtain
SN FWE( )y =D 0> Aty (@y) = (L f < W) (2). (6)

i=1 yez? i=1 yez2

]

The cross-correlation described in (5) is a simplified version of convolution in practice. Oftentimes,
the cross-correlation is taken with stride, and consecutive cross-correlation layers are separated by
mazx pooling layers, and non-linearities. Stride effectively amounts to restricting f’ : T(2) — R? to
some subgroup of T(2). Letting S be some neighborhood of the origin in T(2) , the max pooling
operator Pg is given by

[Psf'](g) = max f'(g). (7)

g'€gs

In practice S is taken to be a n X n grid centered at the origin, for some small value of n, such as
two or three.

In the next section, we will explore what happens when T(2) is replaced with a more complex group.

3.2 Group Equivariant CNN’s

In this section, we’ll build off of Big Idea 1 to generalize (5) to more complex groups, following work
done in [1], and will conclude by generalizing striding and max-pooling, all as described by [1].

3.2.1 Group Equivariant Cross-Correlation

Recall that given a signal f : Z? — R and a desired number of output channels ¢y, a conventional
CNN will learn a correlation kernel ¥ : Z2 — R which together with f produces the signal
f':T(2) — R given by

filz) = (f > W)(2 Z > fz YWl (y — ). (8)

1=1 y— xGS
v

Let us now write G = T(2), and let g be the group element corresponding to addition of z, then we
obtain f’': G — R defined on G by

filg) = (f x¥)(g ZZf W (g"y). (9)

1=1 yecZ?2

Here, G can be any subgroup of the group symmetries of Z2.



Big Idea 2. Let p4m be the group of symmetries (isometries) of Z2. If f : Z?> — R is a signal on
Z?, and ¥ : Z? — R is a correlation kernel, then for any subgroup G of E(Z?), we may define
the G cross-correlation as

Fi(g) = (f>¥)(g ZZ,}”@ W (g 'y).

i=1 ye72

The signal f’ obtained is a signal an G. This idea applies as well when Z? is swapped with R2.

To see that the map f — f’ is equivariant to some choice of G, we follow along the lines of (6) to
find that

[Lu(f x 97)](g) = [f * W](h"g)

=3 > Hwv((h g y)

=1 y€Z2

— Z > )9 hy)

=1 yEZQ

=Y > LW (g y)

= [[Lnf]* ¥7)(g)

where h € G is arbitrary. Implementing G-convolutions in this way is exactly the approach by in [1],
in which neural networks built from these G-convolutions are referred to as G-CNN’s. We’ll adopt
this terminology as well. In addition to providing the G-equivariant group convolution which we’ve
just described, this paper additionally discusses non-linearities, sub-sampling, and pooling layers,
all of which are important for realizing G-CNN’s as true generalizations of conventional CNN'’s.

3.2.2 Striding and Max Pooling for G-CNN’s

As discussed for conventional CNN’s, strides can be thought of a way of downsampling a signal
to reduce its dimensionality. The T(2) cross-correlation with a stride of two on Z? corresponds
to first computing the cross-correlation on T(2), and then downsampling onto the subgroup H
of translations with even displacements. Thus, we may view cross-correlation with stride as the
composition of two operations: cross-correlation over T(2) and downsampling onto H. However,
one issue is that downsampling in this manner is equivariant only to H, and not to the full group
T(2).

Recall from (7) that the conventional max-pooling operator P is given by [Ps f'](g) = maxgezs f'(¢'),
where S C T(2) is some neighborhood of the origin. There is no reason that pooling in this manner
would be equivariant to T(2). The authors of [1] propose to ensure equivariance by replacing S
with a subgroup H of p4dm. The corresponding max pooling operator Py is then given by

[Pu f'(g) = max f'(g). (10)



where g € pdm, and f’ : p4m — R is arbitrary. The sets gH are known as the left cosets of H
with respect to p4m, and it follows from Theorem 1 that Py f’ is well-defined as function on the
quotient space pdm /H of cosets H.
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Figure 3: Group-theoretic generalizations of striding and max-pooling layers.

Big Idea 3. The equivalent of a strided cross-correlation for a G-CNN is to first apply a normal
cross-correlation, and then subsample on a subgroup H of GG. The equivalent of pooling for a G-
CNN is given by pooling over the cosets of a subgroup H. Formally, for choice of H, the pooling
operator Py is given by

[Prf')(g) = max f'(g").

g'€egH

3.2.3 Limitations of G-CNN'’s

The cost of computing a group cross-correlation as in (9) scales with the size of the group, and
isn’t well suited for continuous groups. In the next section, we’ll explore how to overcome these
challenges.

3.3 Steerable CNN'’s

In this section we will discuss an alternative to G-CNN’s for constructing equivariant cross-correlations,
surveying the perspective taken in [4] to explore so-called steerable CNN’s. We will draw a distinc-
tion between the base space Z2, and the fibers R¥ attached to each grid point, and use this distinction
to construct cross-correlations equivariant to representations G which act not just on the base space,
but the fibers as well.

10



3.3.1 Fibers and Base Spaces

With the same notations as before, recall that the G-CNN cross-correlation of a signal f : Z% — R
with the kernel ¥ : Z? — R is given by

filg) = (fxW)(g ZZ]‘; Y (g7'y).

=1 yeZ?

Up until now, the kernel U has been arbitrary, and it is only by the taking this cross-correlation to
produce a signal on the group G itself are we able to ensure equivariance. Explicitly, the equivariance
is summarized by

[Ln(f > ¥9)](9) = ([Lnf]* ¥7)(g)

where L;, denotes action by some group element h € G. Again, what this says is that if we apply
group element A to f, and then take the correlation, we get the same result as first taking the
correlation, and then applying the group action on resulting signal on G. Importantly, such Lj
act only on Z2, seemingly ignoring the our signal f : Z? — R® is in fact a stack of ¢; > 1 maps
fi : Z* — R. Somehow, there is important distinction to be made between the Z*-dimension of our
signal f, and the R¥-dimension of f.

- /7

SHock of Feature 5'5‘"“\ Z -3 R
map$

Figure 4: The objects we care about are signals rather than stacks of feature maps.

To properly motivate this distinction, let’s first make explicit what might be traditionally called
a multi-channel feature map. Such a mapping is given by a stack of ¢ (the number of channels)
feature maps {f; : Z* — R}¢_,. Of course, we can rewrite these ¢ signals as a single, combined
signal f : Z% — R°. This rewritten version is the perspective taken up to this point in our survey.
We refer to the space Z? here as the base space, and the vector space R¢ as a fiber. We consider the
fiber F,, ~ R¢ at each point to be distinct. Thus, such a signal f is defined on the base space Z?2,
and at each point x € Z? takes values f(z) € F, ~ R

11



3.3.2 Fiber Equivariant Kernels

One issue with G-CNN’s is that they consider only group actions on the base space Z?, leaving the
fibers intact. We lose out on a significant opportunity to inject invariance by doing so, and must
instead rely on an expensive group cross-correlation. We can simultaneously solve the problem of
this expensive group cross-correlation and our neglect of the fibers by instead forcing ¥ to satisfy an
equivariance property which involves a group action on the fibers. Considering again the standard
translational cross-correlation given by

flla)=[f »¥)(x) =Y f(y)¥(y —z) € R (11)

and letting my and m; respectively be representations of some subgroup H of G acting on Z? and
on the fiber F, ~ R%, we seek ¥ so that m; o W = ¥ o 7y, or in other words if

m[lf x V(@) = [[mof] * W(x) (12)

for all x € T(2), and signals f : Z* — R%. The reason for only considering equivariance with
respect to a subgroup H, rather than the whole group G, is that for many choices of G, such as
p4, it is impossible to achieve such this equivariance condition on the whole group. For example, W
must be compactly supported in practice, so that it cannot possibly satisfy the desired equivariance
property with respect to translations, as we could simply translate out of the support of W. In [4],
H is taken to be the subgroup of G' composed of rotations about the origin.

£ () f

rotote S : f C

» Y ®Y
v
l’fo Lo "( "
_—
£6) T 569

Figure 5: Realizing the fibers F, ~ R3, z € R? as a representation of the subgroup H of rotations
about the origin. In this case, the rotation acts as a permutation matrix, although this need not
be the case in general.

Notice that for fixed mp, 71 of the form described above (with 7; acting on the fibers), the set of W
which satisfy the desired equivariance property m o W = W o 7y is a linear subspace of the space
of the possible signals ¥’ : Z? — R¢. The approach taken by [4] is to precompute a basis for this
subspace, and parameterize ¥ as a learnable linear combination of these basis elements.
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3.3.3 The Induced Representation

In order to obtain equivariance with respect to the whole group G = p4, we must somehow construct
a representation for G, which extends the representation we have chosen for H. The canonical
choice for such a representation is known as the induced representation p; = Ind$ m [8]. Every
group element g € p4 can be written uniquely as a product g = tr, where t is a pure translation,
and r, a pure translation. Then, letting py denote the standard action of p4 on Z?, we have that.

[oo(tr) f * W](z) = [Ler f * ¥](x)
= p1(tr)[ Lo f * V()
= mi(r)[f  O]((tr)"'x)
establishing equivariance. In other words, denoting by F' = €, F, the induced representation
described how p4 acts on the space F'. The mental picture is that the group element g = tr first

applies the map m(r) : F, — F,, shuffling the contents of each fiber F,. The contents of each F,
are then replaced by the contents of F;y-1(5), or, in other words, the fibers are translated by (tr)~L.

Big Idea 4. Steerable CNN'’s first establish fiber equivariance with respect to the stabilizer H
(rotations about the origin) of p4. When the group action on the the channel-space is realized as a
represenation of H, it can then be extended to the induced representation Indfl mp, providing full
G-equivariance.

Another reason it is clear to choose H to be the group of rotations is that the resulting signal f W
is defined on the the quotient G/H = T(2) ~ Z>.

3.4 Spherical CNN'’s

Thus far, our discussion has been concerned with the flat (and discrete) space Z?. However, results
from the past few sections apply equally well to R? in theory, if not in practice. In this section, we
will turn away from Z? and R? to consider more general homogeneous spaces, in doing so following
along with [5]. Recall that on Z?, the G-cross correlation f’ : G — R® of a signal f : Z* — R“
with a kernel W : Z2 — R is given by

Z > (g y). (13)
i=1 ye72
where 1 < j < ¢5. When Z? is replaced with R?, the summation becomes an integral:
Z Y)W (g™"y). (14)
y€R2

Then, to switch to the sphere S?, we need only swap R? for S? in the equation above, and take G
to be the group SO(3), so that R € SO(3) is a rotation:

=> > fily)¥(rRy). (15)

i=1 yeS?

13



The signal f’ is defined on SO(3). Further convolutional layers must therefore involve SO(3)-
convolutions. One challenging complication which therefore emerges is that SO(3) is three dimen-
sional, so that the time complexity of such a convolution becomes O(n®). S? convolutions, which
are taken with respect to the group G = SO(3), are similarly expensive, and would naively require
O(n®) time to compute.

Big Idea 5. Let S be a homogeneous space with respect to a group GG. Then cross-correlation on
S is realized as the G cross-correlation on S. Examples of this include T(2) cross-correlations on
Z? and SO(3) cross-correlations on S2.

3.4.1 Efficient Continuous Cross-Correlation

To circumvent such expensive convolution, the authors of [5] instead perform the convolution in fre-
quency space after taking the generalized Fourier transform of the signal and kernel. The necessary
identity is

fxg=1g (16)
which essentially says that the Fourier transform of the cross-correlation of two functions is the same
as the product of the respective Fourier transforms of the two functions. Taking the inverse Fourier
transform then yields the desired cross-correlation. Performing the fast Fourier transform and

inverse Fourier transform in practice in the context of spherical CNN’s is explored and elaborated
on in great detail in [5].

3.5 CNN’s on Homogeneous Spaces

In this final section, we briefly survey the work of [3], which brings together ideas discussed previ-
ously, including the base space/fiber formalization from Section 3.3.

Big Idea 6. Start with a Homogeneous space B with respect to a group G, and fix an origin
0o € B. Let H < G be the stabilizer of o, so that B ~ GG/H. Setting B to be our base space, and
a representation of p of H as our fibers, we obtain the associated bundle. By ensuring that our
kernel is p-equivariant, we obtain via cross-correlation a signal on B ~ G/H which transforms as
the induced representation Ind$. This construction is illustrated in Figure 6.

3.6 Future Work

While we touched on many novel ideas, this survey is by no means complete. Several notable omis-
sions I would like to point out (perhaps to be included in later drafts of this same document) are
3d Steerable CNN’s [7], which extends steerable CNN’s to three dimensions, and Gauge Equivari-
ant CNN’s [2], which generalize CNN’s beyond the global symmetries of homogeneous spaces to
arbitrary manifolds, in which local symmetry is realized through guage equivariance.

14
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Figure 6: A general formula for CNN’s on homogenous spaces.
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